The Generalized Inverse Sum Indeg Index of Some Graph Operations
نویسندگان
چکیده
The study of networks and graphs carried out by topological measures performs a vital role in securing their hidden topologies. This strategy has been extremely used biomedicine, cheminformatics bioinformatics, where computations dependent on graph invariants have made available to communicate the various challenging tasks. In quantitative structure–activity (QSAR) structure–property (QSPR) relationship studies, are brought into practical action associate biological physicochemical properties pharmacological activities materials chemical compounds. these degree-based found significant position among other descriptors due ease computing process speed with which can be performed. Thereby, assessing is one flourishing lines research. generalized form inverse sum indeg index recently introduced. Many derived from this index. paper, we provided bounds related for some operations, including Kronecker product, join, corona Cartesian disjunction, symmetric difference. We also presented exact formula disjoint union, linking, splicing graphs.
منابع مشابه
The Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
متن کاملthe generalized wiener polarity index of some graph operations
let g be a simple connected graph. the generalized polarity wiener index ofg is defined as the number of unordered pairs of vertices of g whosedistance is k. some formulas are obtained for computing the generalizedpolarity wiener index of the cartesian product and the tensor product ofgraphs in this article.
متن کاملComputing GA4 Index of Some Graph Operations
The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G u v , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...
متن کاملThe Hyper-Zagreb Index of Graph Operations
Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian p...
متن کاملIndex of Some Graph Operations
Let G = (V, E) be a graph. For e = uv ∈ E(G), nu(e) is the number of vertices of G lying closer to u than to v and nv(e) is the number of vertices of G lying closer to v than u. The GA2 index of G is defined as ∑ uv∈E(G) 2 √ nu(e)nv(e) nu(e)+nv(e) . We explore here some mathematical properties and present explicit formulas for this new index under several graph operations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2022
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym14112349